A Single Brief Burst Induces GluR1-dependent Associative Short-term Potentiation: A Potential Mechanism for Short-term Memory

نویسندگان

  • Martha A. Erickson
  • Lauren A. Maramara
  • John Lisman
چکیده

Recent work showed that short-term memory (STM) is selectively reduced in GluR1 knockout mice. This raises the possibility that a form of synaptic modification dependent on GluR1 might underlie STM. Studies of synaptic plasticity have shown that stimuli too weak to induce long-term potentiation induce short-term potentiation (STP), a phenomenon that has received little attention. Here we examined several properties of STP and tested the dependence of STP on GluR1. The minimal requirement for inducing STP was examined using a test pathway and a conditioning pathway. Several closely spaced stimuli in the test pathway, forming a single brief burst, were sufficient to induce STP. Thus, STP is likely to be induced by the similar bursts that occur in vivo. STP induction is associative in nature and dependent on the NMDAR. STP decays with two components, a fast component (1.6 +/- 0.26 min) and a slower one (19 +/- 6.6 min). To test the role of GluR1 in STP, experiments were conducted on GluR1 knockout mice. We found that STP was greatly reduced. These results, taken together with the behavioral work of D. Sanderson et al. [Sanderson, D., Good, M. A., Skelton, K., Sprengel, R., Seeburg, P. H., Nicholas, J., et al. Enhanced long-term and impaired short-term spatial memory in GluA1 AMPA receptor subunit knockout mice: Evidence for a dual-process memory model. Learning and Memory, 2009], provide genetic evidence that STP is a likely mechanism of STM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory

Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...

متن کامل

Preservation of long-term memory and synaptic plasticity despite short-term impairments in the Tc1 mouse model of Down syndrome.

Down syndrome (DS) is a genetic disorder arising from the presence of a third copy of the human chromosome 21 (Hsa21). Recently, O'Doherty and colleagues in an earlier study generated a new genetic mouse model of DS (Tc1) that carries an almost complete Hsa21. Since DS is the most common genetic cause of mental retardation, we have undertaken a detailed analysis of cognitive function and synapt...

متن کامل

The effect of intrahippocampal microinjection of Naloxone on short –term and long-term memory in adult male rats

Introduction:The hippocampus is one for the major centers of learning and memory. Role of the opioid system has been investigated and on the other hand receptors related to this system such as mu-opioid receptors (MOR) are extended in the hippocampus. In this study the effect of Naloxone administration as a mu opioid receptor antagonist on passive avoidance memory in adult male rats was i...

متن کامل

Postsynaptic action potentials are required for nitric-oxide-dependent long-term potentiation in CA1 neurons of adult GluR1 knock-out and wild-type mice.

Neocortical long-term potentiation (LTP) consists of both presynaptic and postsynaptic components that rely on nitric oxide (NO) and the GluR1 subunit of the AMPA receptor, respectively. In this study, we found that hippocampal LTP, induced by theta-burst stimulation in mature (>8-week-old) GluR1 knock-out mice was almost entirely NO dependent and involved both the alpha splice variant of NO sy...

متن کامل

Emotion Enhances Learning via Norepinephrine Regulation of AMPA-Receptor Trafficking

Emotion enhances our ability to form vivid memories of even trivial events. Norepinephrine (NE), a neuromodulator released during emotional arousal, plays a central role in the emotional regulation of memory. However, the underlying molecular mechanism remains elusive. Toward this aim, we have examined the role of NE in contextual memory formation and in the synaptic delivery of GluR1-containin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cognitive neuroscience

دوره 22 11  شماره 

صفحات  -

تاریخ انتشار 2010